
 
Figure 1. Comparison of IEEE 802.15.4 and 802.11 spectrum 

occupancy [5] 

 
Figure 2. Position and type of several sensors within 

SmartSantander testbed 
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Abstract—1 The reliability of IoT networks gained its 
significance during the past several years, mainly due to the 
harmful coexistence with other technologies operating in the 
same 2.4 GHz frequency band. IoT applications, using 
ZigBee, have much lower power than WiFi, the most 
widespread technology in this frequency band. Such a 
coexistence results in a significant packet loss in ZigBee 
networks, which makes them unreliable. The sensor data 
driven design directions, developed using the massive online 
IoT testbed SmartSantander, are given in this paper. The 
interference problems are identified and described, which is 
the most important step towards the future performance 
improvement of IoT applications. 

I. INTRODUCTION 
Modern wireless communications systems are in a great 

expansion. However, due to the limited spectrum 
resources, heterogeneous communication systems often 
operate in the same frequency band. This is the case with 
widely used the Internet of Things (IoT) [1], [2] networks, 
based on ZigBee protocol [3], [4], and WiFi networks, 
both operating in 2.4 GHz frequency band, as shown inf 
Fig. 1 [5], and interfering with each other. The carrier 
sensing technology is a part of both standard, and it should 
provide shared access without interference. However, 
since ZigBee has much lower transmitting power than 
WiFi [6]–[8], WiFi devices are not able to detect ZigBee 
deviecs and the IoT systems suffer from a severe packet 
loss, making sensor data unreliable. Therefore, in this 
paper we give design directions for an IoT application, 
with the respect to the reliability [9], [10], based on the 
sensor reading data. 

The main source of the unreliable sensor data in IoT 
networks is the interference, the most often with WiFi 
networks. Thus, the IoT networks should be designed with 
the reliability in mind. There are proposals that decrease 
the packet loss in ZigBee networks, based on the 
modification of ZigBee [11]–[15] or both ZigBee and 
WiFi [16]. However, these solutions require access to the 
physical level of ZigBee and WiFi nodes in a network, 
which is often not available. A methodology to identify 
problems in an IoT network and to help design it more 
reliable, is given in this paper. 

                                                           
1The research leading to these results are performed within the project 
“SemantiC Coordination for intelligENT sensors (2CENTs)”. This 
project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreement No 643943. 
The research was performed on SmartSantander testbed. 

II. SYSTEM MODEL 
The analysis of an IoT network may be performed in 

several different ways. One approach is to create 
simulation, but it is not always possible due to numerous 
factors and effects that cannot be theoretically predicted 
and simulated. The other approach is to conduct an 
experiment on a deployed commercial network. Again, it 
is not often suitable because an experiment could interfere 
with a normal operation of the system. The most 
appropriate methodology is to run an experiment and 
acquire data on a massive online testbed. In this paper we 
will be using SmartSantander [17], an IoT online testbed 
located in Santander, Spain, which operates within Fiesta-
IoT [18] testbed federation. It consists of several 
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Figure 4. The output of one temperature sensor 
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Figure 6. Pearson correlation coefficient as a function of distance 

between sensors 0  100 m 
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Figure 5. Pearson correlation coefficient as a function of distance 

between sensors 0  1300 m 

thousands of sensors deployed throughout the city. The 
sensors are connected to a number of gateways using 
ZigBee network. Finally, gateways are connected, using 
mobile and WiFi network, to the datacenter. The position 
of the sensors in one part of the city is shown in Fig. 2. 
The experiment includes data captured during 37 days 
from 121 sensors. There were 10,565 measurements per 
sensor. The data acquired during the experiment is 
statistically analyzed using correlation analysis, i.e. 
Pearson correlation coefficient [19].  
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where xi and yi are i-th members of the datasets whose 

correlation coefficient is needed, and n is the number of 
samples in each dataset. 

The analysis of the sensor’s data will give insight into 
the system operation and will provide the design 
directions. 

III. RESULTS AND DISCUSSION 
The acquired sensors data analysis is presented in the 

following figures. Figs. 3 and 4 show the time plot of the 
data from two different types of the sensors. As can be 
seen, there are some data voids at some points of time. 
These missing data are the result of the packet loss due to 
the interference. This conclusion is confirmed also in the 
next figures. Figs. 5 and 6 illustrate the Pearson 
correlation coefficient for the presence or absence of data 

between all pairs of sensors in the considered part of the 
testbed, for different distance range. Fig. 5 shows the 
correlation coefficient between all considered sensors, and 
Fig. 6 depicts the correlation coefficient for pairs of 
sensors which are up to 100 meters away from each other.  
It can be seen that the correlation is generally higher for 
lower distance, which confirms that the data voids are a 
consequence of the same WiFi interference at the sensors 
close to each other. There are some pairs of sensors 
having low correlation and low distance, as well as 
relatively high correlation and high distance. It is a result 
of different operating channels and the presence/absence 
of the obstacles between the sensors. 
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Figure 3. The output of one soud pressure level sensor 

In order to avoid the loss of data caused by the 
interference, some kind of coordinated spectrum access 
between ZigBee and WiFi should be used. Based on the 
analysis of the time moments when the data form sensors 
are missing, it is possible to predict the next moment of 
the missing data, by employing, for example, a neural 
network. However, during the experiment, there were not 
enough data to train the neural network, so it could not be 
used for the prediction either. But, over the time the 
amount of data will increase and ti would be achievable to 
predict the interference and therefore avoid it by 
proactively changing the operating channel of the ZigBee 
device being interfered. 

IV. CONCLUSIOIN 
This paper considers the reliability of an IoT network 

and explores the possibility to incresease the reliability by 
using data mining and analysis. Namely, IoT networks 
based on ZigBee standard operate in the same 2.4 GHz 
frequency band as WiFi networks, which causes 
interference between them. The interference causes 
problems in the operation of IoT network and leads to the 
loss of data from wireless sensors. By analysing the 
patterns of the previous data loss events, the paper 
suggests the applicaton of the neural network to predict 
some future data loss and prevent it by changing the 
ZigBee device operating frequency in advance.  
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